java.util.HashMap
一般深入阅读前,我习惯先扫下开头的类的Java doc。里面有如下信息点:
HashMap是Java集合框架中的一员。它是基于
Map
接口实现的一个哈希表。它允许插入null的key和null的value。它的存储结点的结构叫bucket。
两个影响到性能的参数:初始容量和加载因子。
当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。
该实现不是同步的。可使用
Collections.synchronizedMap(new HashMap(...));
“封装”一个简单的同步的map,但需注意一点,这个返回的迭代器都是快速失败的。作者是四位神 : Doug Lea、Josh Bloch、Arthur van Hoff、Neal Gafter。
是什么?为了解决什么问题?
从目的来讲,HashMap是一个存储键值对的集合,也就是符号表。往细里说,如上叙,
是基于Map
接口实现的一个哈希表。
内部实现
先简单说说存储结构,在说下重要属性,最后说下重点方法。
存储结构
重要属性
transient Node<K,V>[] table; //存储Node bucket的数组
transient int size; //当前存储的key-value对的总数
int modCount; //记录集合结构变化的次数,用于快速失败等等
int threshold; //所能容纳的key-value对总数,当集合的key-value对大于该值resize
final float loadFactor; //加载因子,默认0.75,一般不要改
关于table这数组的length为什么必须为2的n次方(JavaDoc中有capacity MUST be a power of two.
)?
摘自美团点评技术团队 | Java 8系列之重新认识HashMap:
在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(一定是合数),这是一种非常规的设计, 常规的设计是把桶的大小设计为素数。相对来说素数导致冲突的概率要小于合数,具体证明可以参考http://blog.csdn.net/liuqiyao_01/article/details/14475159, Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化, 同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。
当自定义设置初始容量和负载因子时,有个有趣的方法tableSizeFor(int cap)
:
public HashMap(int initialCapacity, float loadFactor) {
……(省略)
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
/**
* Returns a power of two size for the given target capacity.
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
可自行模拟一下方法是如何执行的。 主要功能是返回一个比给定整数大且最接近的2的n次方整数,如给定12,返回2的4次方16。
方法
put
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
首先看下,hash方法:
/**
* Computes key.hashCode() and spreads (XORs) higher bits of hash
* to lower. Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.) So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
为什么要多算这一步hash呢?
因为通过h >>> 16
并异或h
能使,在HashMap的Node<K,V>[] table
的length还小时,
key的哈希值的高位更充分参与到定位bucket的过程。(注意下文中tab[i = (n - 1) & hash]
)。
拓展阅读:美团点评技术团队 | Java 8系列之重新认识HashMap的"确定哈希桶数组索引位置"一小节。
/**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
感觉没什么可说,源码本身也有注释。
resize
扩容方法。挺赞的代码。
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//没超过最大值,大小扩大为2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {//初始化threshold
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
//重整每个node的位置
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap); //红黑树重构
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;//下标位置移动原来容量大小
}
}
}
}
}
return newTab;
}
以上代码做了点注释。
btw, 思考一下每个&
按位运算的巧妙处。
核心算法及性能
由于红黑树实现,所以key-value对的value必须实现了Comparable接口。
性能相关点
由上算法可知,n次插入后单个查询的时间复杂度,最好O(1),最差O(n),如果是红黑O(log n)。
key计算hashcode的算法是否复杂。
初始容量和加载因子的设置。
设置初始容量前,最好是对新建的HashMap对象存储多少键值对有一个估量。因为resize会浪费性能。
加载因子个人认为一般使用默认的0.75,当然,认为系统有很多空闲空间,可以设置小一点。
未解疑问
HashMap的TreeNode
是extends
LinkedHashMap的Entry,而LinkedHashMap的Entry又是extends
回HashMap的Node
。
那为什么不设计一个entry工厂呢?暂时未想到这么设计的point在哪。
references
[1] Bruce Eckel.Java编程思想,第四版[M].中国:机械工业出版社,2007
[2] ImportNew | Java 8:HashMap的性能提升
[3] oracle | The Collections Framework